

De l'extérieur à l'intérieur : intégrer le risque géopolitique d'approvisionnement en tant que dimension complémentaire dans l'analyse du cycle de vie des ressources abiotiques From the outside in: integrating the geopolitical supply risk as a complementary dimension in the life cycle assessment of abiotic resources

Guido Sonnemann Full Professor, University of Bordeaux

Université BORDEAUX

Contributor to this work stream:

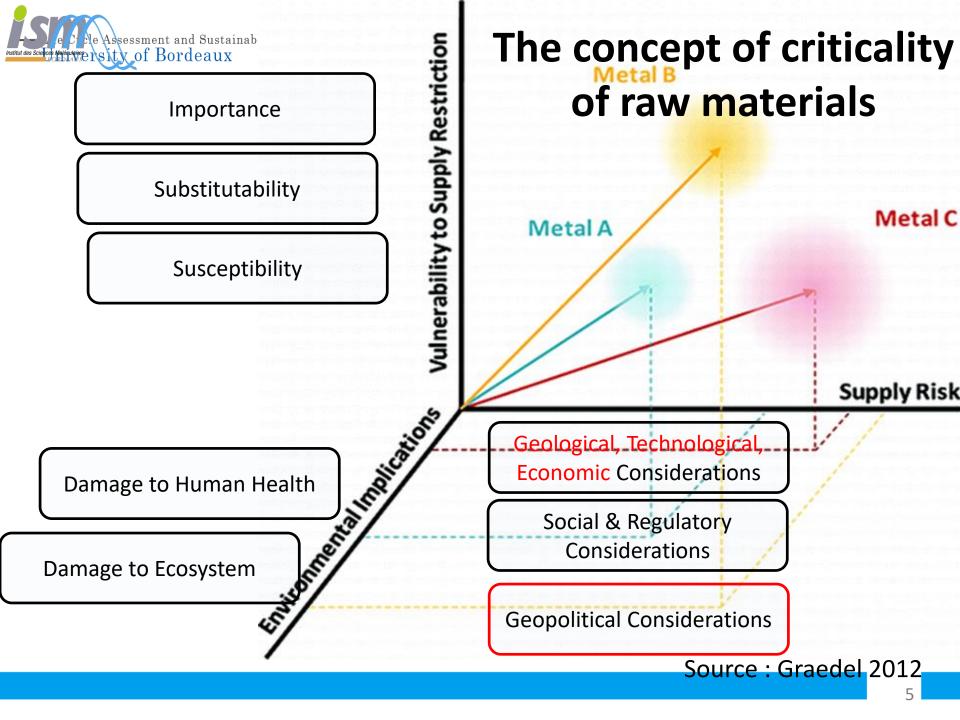
Eskinder D. Gemechu^a Steven B. Young^b Alexander Cimprich^b Christoph Helbig^c Andrea Thorenz^c Axel Tuma^c

^aUniversité de Bordeaux, ISM, UMR 5255, F-33400 Talence, France.

^bSchool of Environment, Enterprise and Development (SEED), University of Waterloo, Waterloo, Ontario, Canada

^cResource Lab, University of Augsburg, Universitaetsstr. 16, 86159, Augsburg, Germany

- 1. Introduction: Motivation, Background & Objectives
- 2. Methods: Integrating the geopolitical supply risk
 - in life cycle assessment
- 3. Case study
- 4. Conclusions


- Life Cycle Assessment and Sustainable Chemistry Group-

1. Introduction:

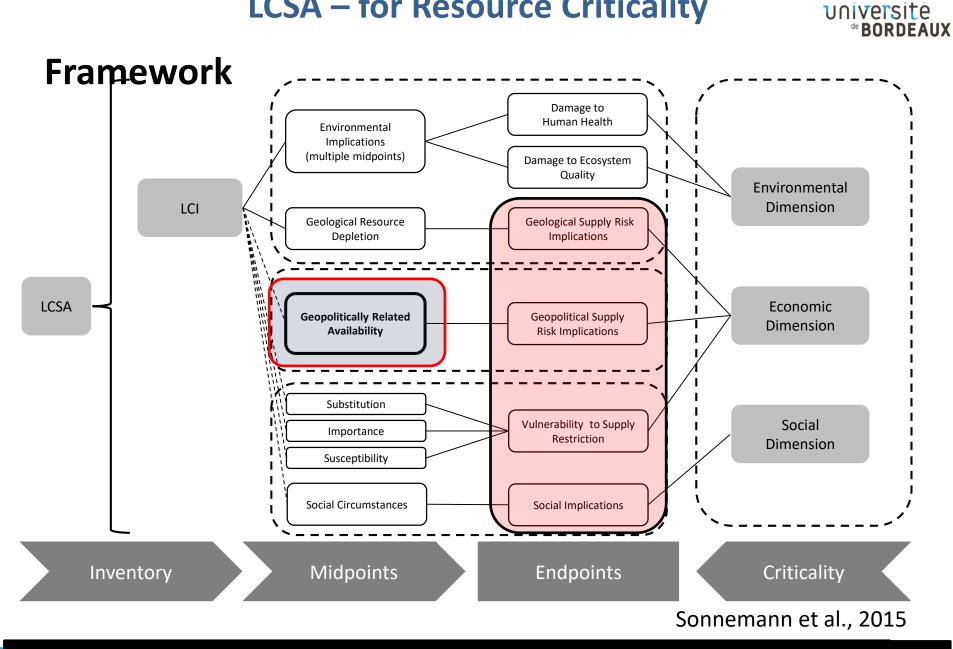
Motivation, Background & Objectives

université [∞]BORDEAUX

Introduction: Objectives

 Explain first steps on how to integrate the geopolitical supply risk as a complementary dimension in the life cycle assessment of abiotic resources

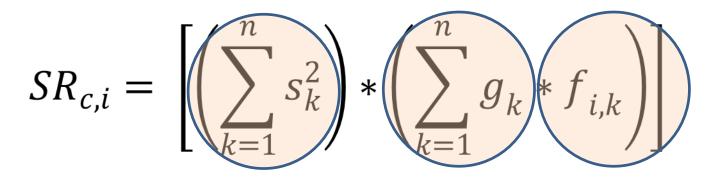
 Use a case study of an electric vehicle as an example to illustrate the value of this integration Life Cycle Assessment and Sustainable Chemistry Group-



2. Methods:

Integrating the geopolitical supply risk in life cycle assessment

LCSA – for Resource Criticality



UNIVERSITY OF WATERLOO

Geopolitical related supply risk

Integrating geopolitical supply risk in LSCA

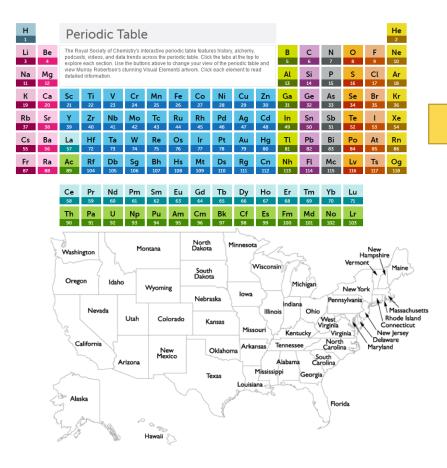
- S_k is the share of country k in the global production (mining or refining) of the commodity c.
- \boldsymbol{g}_k is the political instability indicator of country k.
- *f_{i,k}* is the import share of country *k* in the supply-chain of country *i*.

GeoPolRisk is expressed as a socio-economic risk oriented midpoint indicator with values between 0 and 1 Gemechu et al., 2015

Resource "criticality"...

- "Supply risk" (actually probability)
- "Vulnerability" to supply disruption

Supply Risk = Probability × Vulnerability


Glöser et al. 2015. Resour. Policy. DOI:10.1016/j.resourpol.2014.12.003

...on a product-level

Geopolitical Supply Risk (GPSR)

$$GPSR_{APc} = m_{APc} \times CF_{APc}$$

$$CF_{APc} = GeoPol_{Ac} \times Vuln_{APc}$$

Where

- GPSR_{APc} = Geopolitical Supply Risk for commodity A needed to produce product P in country c
- m_{APc} = amount of commodity A needed to produce product P in country c
- GeoPol_{Ac} = probability of supply disruption of commodity A in country c
- Vuln_{APc} = vulnerability indicator for commodity A needed to produce product P in country c

Cimprich et al. 2017. J. Cleaner Prod. DOI: 10.1016/j.jclepro.2017.06.063

Geopolitical Supply Risk (GeoPol, 1stage)

$$GeoPol_{Ac} = HHI_A \sum_{i} g \frac{f_{Aic}}{p_{Ac} + F_{Ac}}$$

Where

- HHI_A = production concentration of commodity A \rightarrow USGS
- g_i = political (in)stability of producing country i \rightarrow WGI
- f_{Aic} = imports of commodity A from country i to country c \rightarrow UN Comtrade
- p_{Ac} = domestic production of commodity A \rightarrow USGS
- F_{Ac} = total imports of commodity A to country c \rightarrow UN Comtrade

Helbig et al. 2016. J. Cleaner Prod. DOI: 10.1016/j.jclepro.2016.07.214

Geopolitical Supply Risk (GPSR)

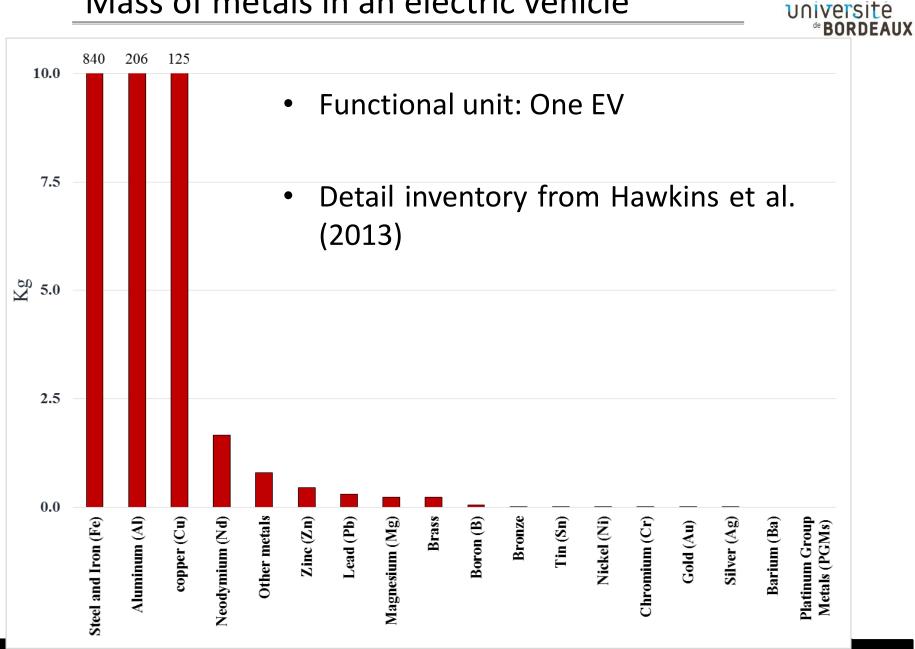
$$Vuln_{APc} = PI_{APc} \times Sub^{-1}_{APc}$$

Where

- PI_{APc} = "product-level importance," $PI_{APc} = \frac{1}{m_{APc}}$
- Sub⁻¹_{APc} = "substitutability" based on Graedel et al. 2015 (PNAS)

Cimprich et al. 2017. J. Cleaner Prod. DOI: 10.1016/j.jclepro.2017.06.063 ***Note: "substitutability" factor not published***

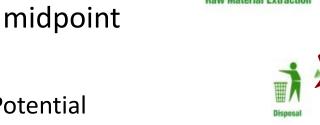
Life Cycle Assessment and Sustainable Chemistry Group-



3. Case study Results of integrating criticality into LC(S)A

Critical raw materials in an electric vehicle

Mass of metals in an electric vehicle

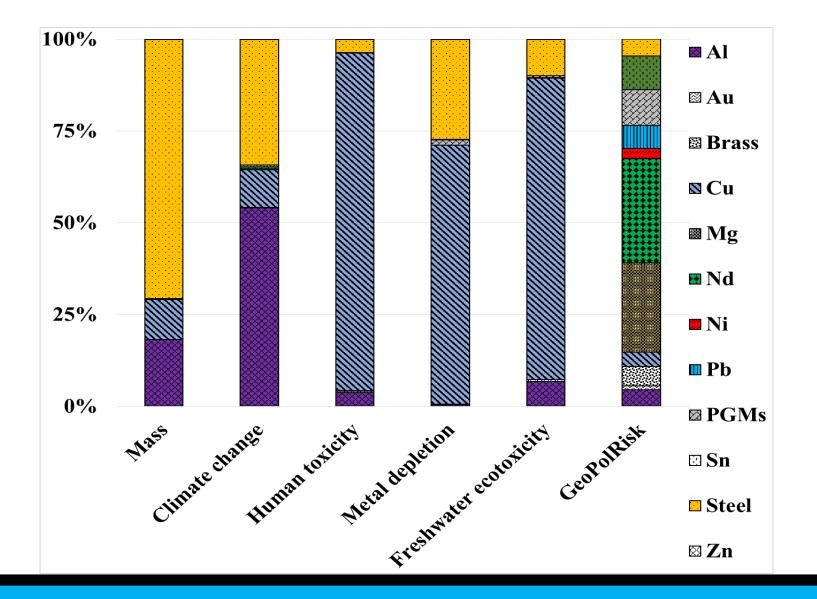

UNIVERSITY OF

ERLOO

Methods and Materials for Environmental Impact Assessment

- LCA software: SimaPro
- LCI database: ecoinvent v3.1
- LCIA method: ReCiPe midpoint
- Impact categories
 - Global Warming Potential
 - Metal Depletion Potential
 - Human Toxicity Potential
 - Freshwater Eco-toxicity Potential
- System boundaries:

No use phase and No end-of-life


Case study published

Gemechu E., Sonnemann G., Young S.B. Geopolitical-related supply risk assessment as a complement to environmental impact assessment: **the case of electric vehicles**, Intl. Journal of LCA 2017; DOI:10.1007/s11367-015-0917-4

Environmental and GeoPolRisk Results

Life Cycle Initiative indicators selected

How can I quantify the...

... changing opportunities of future generations to use resources due to a current resource use?potential resource availability issues for a (inside-out, LCA) product system? (outside-in, LCSA) ...contribution ...contribution ...consequences of ...(economic) ...mineral resource ...potential resource ...potential resource of a product the contribution of a externalities of use based on of a product availability issues for a availability issues for system to the system to chanproduct system due resource use? thermodynamics? a product system product system related to depletion of ging resource to changing resource related to mid-term short-term geopolitcal and resources? guality*? quality*? physico-economic socio-economic aspects? resource scarcity? ADP_{reserve base} Fut, wellfare loss ESP ADPultimate reserves ADP_{reserve base} ADP_{economic} reserves LIME2 (endpoint) ESSENZ SOP ADP_{economic} reserves Eco-indicator 99 GeoPolRisk CEENE Ecoscarcity Impact2002+ TR Ecoscarcity LIME2 (midpoint) EDIP Stepwise2006 LIME (midpoint) ReCiPe2008 AADP AADP SCP EPS TR (ERC) Recomended Interim recommended Interim recom. Suggested Interim recom. Interim recom. Suggested

Minority statement!

Minority statement!

Conclusions

- Criticality assessment of resources and LCA for products have a complimentary nature.
- Integrating criticality into LCSA is useful to compare tradeoffs with environmental impact categories and feasible as shown with our first steps for GeoPol and GPSR
- Data generated for LCA provide a lot basic information on resource use that can be used in this way.
- Life Cycle Inventories need to become more geographically explicit to be more relevant (similar to water).
- The GeoPol and GPSR methods have limitations, some of them are currently addressed in research to cover recycling.
- More work is needed to address **all dimensions** of criticality.

Thank you for your attention!

Prof. Dr. Guido Sonnemann guido.sonnemann@u-bordeaux.fr

CyVi

Groupe de recherche sur l'Analyse du Cycle de Vie et Chimie Durable

Institut des Sciences Moléculaires - ISM

Université de Bordeaux – UMR 5255 CNRS 351 Cours de la libération – Bât A12 33 405 TALENCE cedex – France Tél : 05 40 00 31 83

Web : http://www.ism.u-bordeaux1.fr

