PROJET OVALEC Outil pour VALoriser les actions de transition vers une Économie Circulaire dans la construction

CONGRÈS AVNIR 7 NOVEMBRE- LILLE RODRIGUES JEREMY CONTACT : <u>I.RODRIGUES@BRGM.FR</u> MONFORT-CLIMENT DANIEL, BAZZANE DISNUEL, SEMENT NATHALIE, BONNET ROMAIN, SCHIOPU NICOLETA

OVALE Contextualiser la construction

Géosciences pour une Terre durab

CONTEXT AND PROBLEMATIC

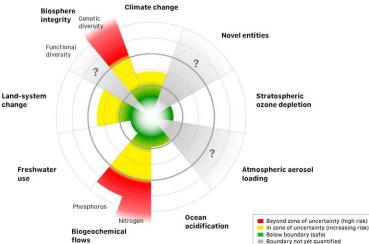
Towards a unique definition of circular economy*

* Kirchherr et al. 2017 Conceptualizing the circular economy: An analysis of 114 definitions

Circular Economy is

- an economic system that replaces the 'end-of-life' concept with reducing, alternatively reusing, recycling and recovering materials in production/distribution and consumption processes.
 - → Hierarchy of resource/waste management strategies
- It operates at the micro level (products, companies, consumers), meso level (eco-industrial parks) and macro level (city, region, nation and beyond),

➔ Multi-scale and territorial dimension

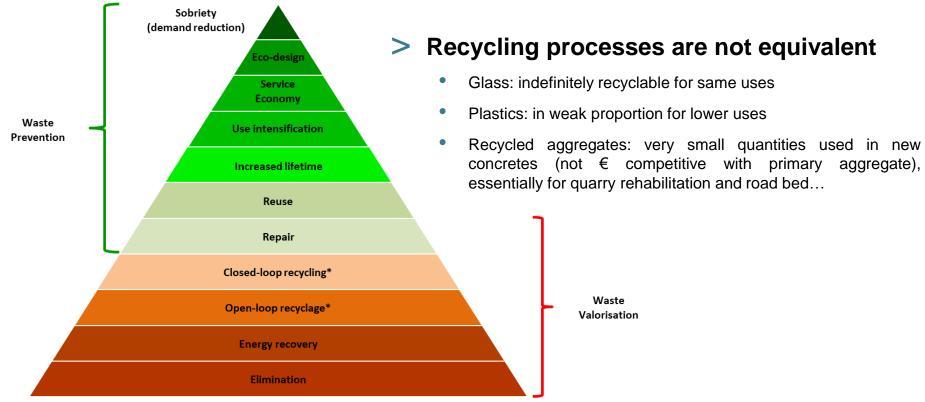

 with the aim to accomplish sustainable development, thus simultaneously creating environmental quality*, economic prosperity and social equity, to the benefit of current and future generations.

→ It is only a means to an end

* Additional hypothesis:

Environmental quality \Leftrightarrow All carrying capacities, planetary boundaries are respected

Stockholm Resilience Center

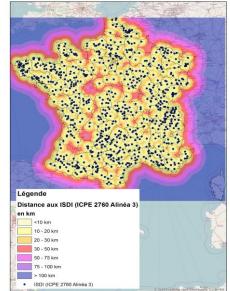

Hierarchy of resource/waste management strategies

> CE is not restricted to recycling

• It is even one of the least interesting strategies

> Recurring hierarchy within numerous frameworks

• Reduce – Reuse – Repair – Recycle, Avoid – Reduce – Compensate, Sobriety – Efficiency – Renewable, etc.



* Closed loop: for uses of equivalent nature or value added

* Open loop: for uses of lower value added

LCA may upset the initial hierarchy

- > Depends on resource type, local infrastructure availability
- Are secondary resources really relevant (Impact from recycling + transport vs. Impact from elimination + extraction + transport)?
- Especially problematic for buildings: lots of heavy materials → high transportation impacts
- Coupling LCA with GIS helps find an optimum strategy % local context
 Planetary Boundaries help assess whether optima are sufficient or not

How do we account for local non-renewable resource management?

- > LCA concepts of «depletion», «scarcity» are ill-defined
- Geologically speaking: no availability issue for aggregates

> However, undeniable pressure within some territories

- Production capacity overload for aggregates
- Need for imports over longer distances
- Need for new (rock) quarries → environmental / social issues
- Higher energy/transportation needs, prices, impacts, land use

OUR PROJECT

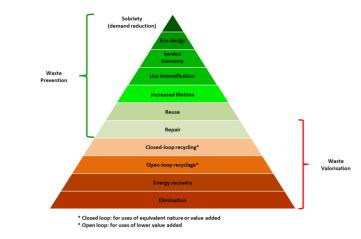
Projet ADEME Bâtiment Durable 2016-2019

Goal

Develop a **methodology** applicable within a <u>decision support tool</u> for building eco-design that:

- Valorises outstanding buildings % circular economy
- Integrates territorial context & project local dimension within LCA impact calculation
 - Local availability of primary/secondary <u>resources</u> (focus on aggregates)
 - Do not travel far, within BRGM competence
 - Availability of <u>waste</u> collection and valorisation chains (design with end-of-life in mind)
- Highligths territories with specific issues (opportunities/threats) % circular economy

Consistently with proposed definition

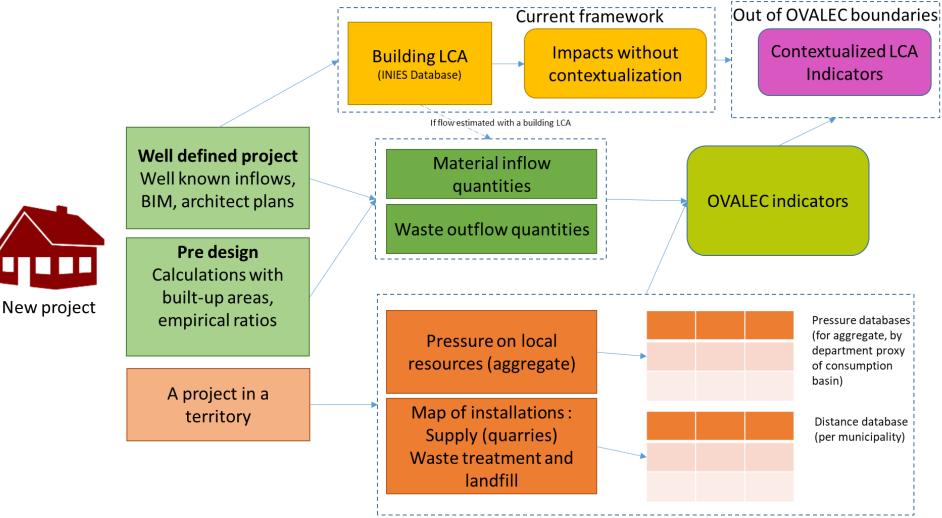


Indicator choices (% CE hierarchy)

FOR NOW

Sobriety excluded: hard to estimate

- > Resource efficiency: focus on aggregates (⊂ raw material, important weight in a building)
- Issue fundamentally local, poorly accounted for within LCA
- Hard to access relevant flow data: need for additional databases
- > Direct flows, construction/demolition
- Other building LC phases generate little aggregate flows
- Data accessibility % indirect flows + background contextualization


Leverage	Indicator		Scale		
			Building - direct	Building – direct	Territoire
				& indirect	
Sobriety	Floor area/user				
Efficiency	Raw material/ FA	Waste production / FA	\checkmark		✓
	Energy/ FA				
	Water / FA				
	Land / FA				
Sustainability	Material nature	Waste management	\checkmark		✓
	Biosourced	• Reuse			
	• Non biosourced recycled	• Repair			
	Primary raw material	Closed loop Recycling			
	,	Open loop Recycling			
		•			

Projet ADEME Bâtiment Durable 2016-2019

Conceptual framework

4 groups of indicators

- 1. Project aggregate intensity: aggregate consumption / floor area
 - Assessing project impact on resources requires to quantify consumption
 - Minimising this indicator \Leftrightarrow Ressource efficiency
- 2. Local supply: transportation needs (t.km)
 - High transportation distances \Leftrightarrow one measure of ressource pressure
- 3. Pressure on local ressources: normalised aggregate intensity
 - Comparison with different reference intensities
- 4. Sustainable waste management: total volume & proportions to different management chains
 - Declined for different product types (aggregates, metals, glass, etc.)
 - Goal *a priori*: Maximise direction towards upper class chains

PRESSURE ON LOCAL RESOURCES

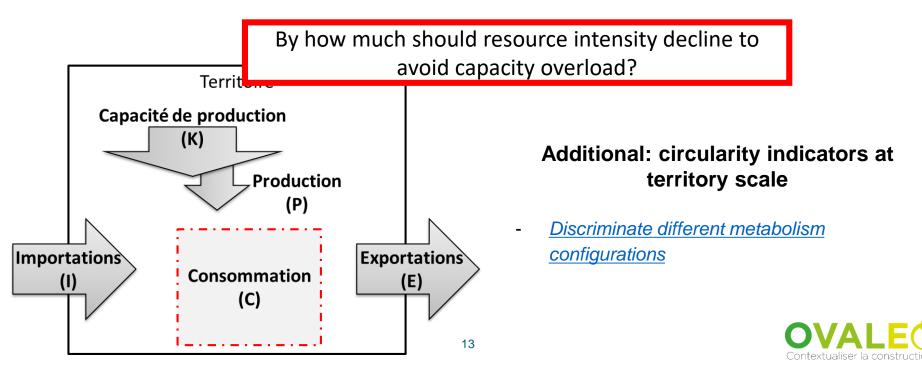
TERRITORY SCALE

Pressure on resources

When is a resource under pressure, in a given territory?

- When demand/production exceed production capacities or available stocks*
 *Limited by physical availability <u>AND technical, economical, social, environmental constraints</u>
- When no alternative/secondary ressource can substitute
- « Sustainability thresholds » Territorial scale
- Short Term: production capacity (technical-regulatory data) → "Tap size"
- - Resource must regenerate faster than it is consumed
 - Territory must have enough time to developp alternatives before resource exhaustion (ex. 20 yr)
 - New processes, materials, new resources
- At current rate, how much time left before exhaustion?
- Is it enough for alternatives to take over without shortage?
- By how much should resource consumption be reduced to avoid shortage?

Exhaustion ⇔ Resource is not *physically* available anymore. It has run out ≠ Shortage ⇔ Economy *lacks* a resource that it *needs*



Short term pressure

When demand exceeds production capacities

 $\frac{C}{K} > 1$

- Facilities unable to cover local demand → Imports needed
- Data easily accessible : Base de Données Carrières et Matériaux ; SOeS ; UNICEM
- Other indicator, not easily linked to buildings: load factor $f = \frac{P}{\kappa}$
 - Values ≥1 → capacity overload

Long term pressure

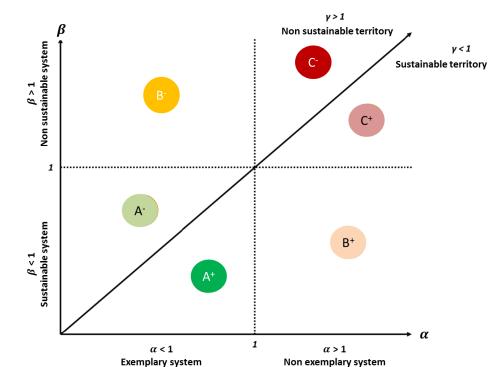
- When no alternative/secondary resource can substitute
- → Available resources must last long enough to allow take-over by alternatives
 - New processes, materials, new resources

For OVALEC: simplifying hypotheses (proof of concept)

- How much time left before aggregate exhaustion?
 - Stock roughly estimated: Production capacity * Remaining authorization period
 - No new quarry (strong environmental, social constraints), no prolongation of existing capacities
 - Consumption rate assumed constant over time
- Required time for alternatives to take over: 20 yr
 - Average quarry duration, time to implement territorial/regional plans

By how much should resource intensity decline to avoid aggregate shortage?

CROSSED INDICATORS BUILDING-TERRITOY FOR DECISION SUPPORT

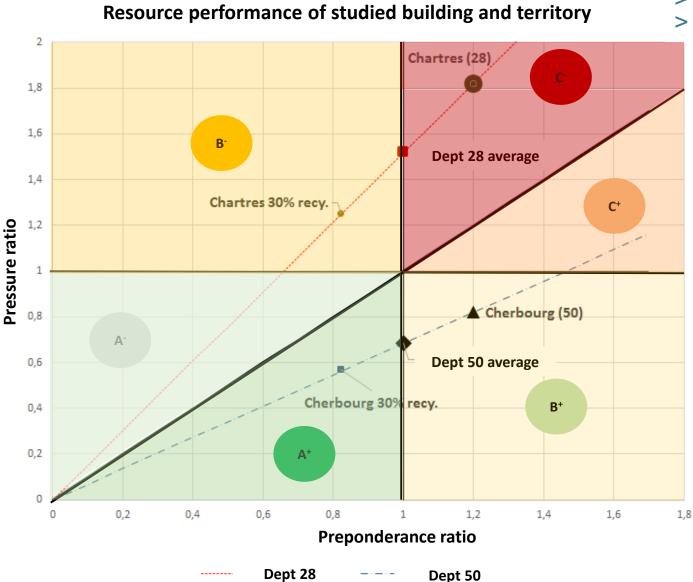

Insights of a double normalization of resource intensity (RI)

Linking a collective issue (territory) to an individual issue (building)

- Do I outperform my competitors?
 - Is my RI better (lower) than that of average buildings within my territory?
- Can I be seen as sustainable? Do I fit within my assigned carrying capacity?
 - Is my RI lower than the calculated sustainable intensity?
- Is my territory under pressure?

В

Does the average RI exceed the sustainability threshold?

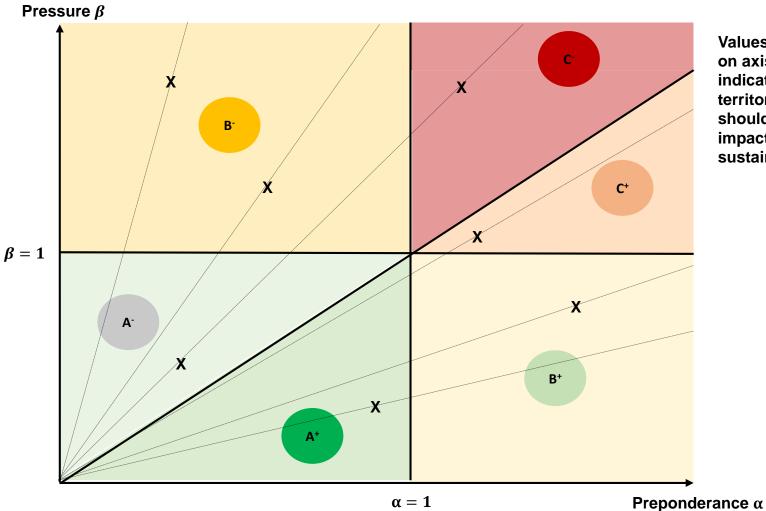


 $\alpha = \frac{Building RI}{Average RI}$ Building RI

 $B = \frac{Building RI}{Sustainable RI}$

 $= \frac{Average RI}{Sustainable RI}$

Resource pressure – Comparison between territories



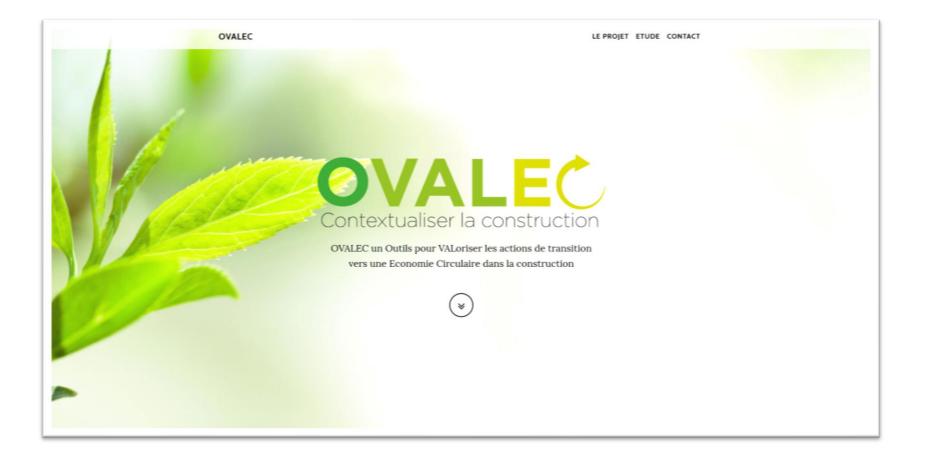
Resource intensity:

- > Building : 1.32 t/m²
 - Average dept 28 & 50 : 1.1 t/m²

Ambition: help set and prioritize different impact reduction targets

Example: Minimise $\sum_i \gamma_i * \beta_i$

Values of γ are read on axis $\alpha = 1$ and indicate by how much territory as a whole should reduce its impacts to be sustainable


18

PILOT IMPLEMENTATION

Pilot screenshots

Pilot screenshots

Contextualiser la constructio	use and	alculation of resource waste production dedicated database			All.	owscontextualisa Minimum transı	
	Importer un fichier E+/C- *			Code postal du projet		needs Local pressure, o	etc
\$	Parcourir 15_rs2e.xml * Champs obligatoire						
Rempliss	sez le formulaire pour obtenir vos résultats	.!	Lancer				
		ADEME EXAMPLE AND	e brann on brann	Alliance			

Pilot screenshots

Importer un fichier RSEE *	Code postal du projet
Parcourir RS2E_Etude_test_Ovalec.xml	
* Champs obligatoire	
rojet : Maison individuelle	
de postal : 95120	
rface de plancher ouvrage : 178.2 m ²	
Intensité matière chantier ?	Gestion local des déchets ?
Intensité matière chantier : 0.62 t/m ²	Déchet inerte : 0.95 t/m ²
Primaire : 0.62 t/m ²	Déchet non dangereux : 0.06 t/m ²
Secondaire : 0 t/m ²	Déchet dangereux : 0 t/m ²
	Gestion locale des déchets : 3.9 t.km/m ²
Approvisionnement local ?	
Approvisionnement local : 15.42 t.km/m ²	
Tension sur les ressources ?	
Significativité chantier : 0.56	
Tension chantier : 0.6	Indice for sension individually (5) V+1 Tension are in se
Tension collective : 1.07	8

Contextualiser la construction

Conclusions and perspectives

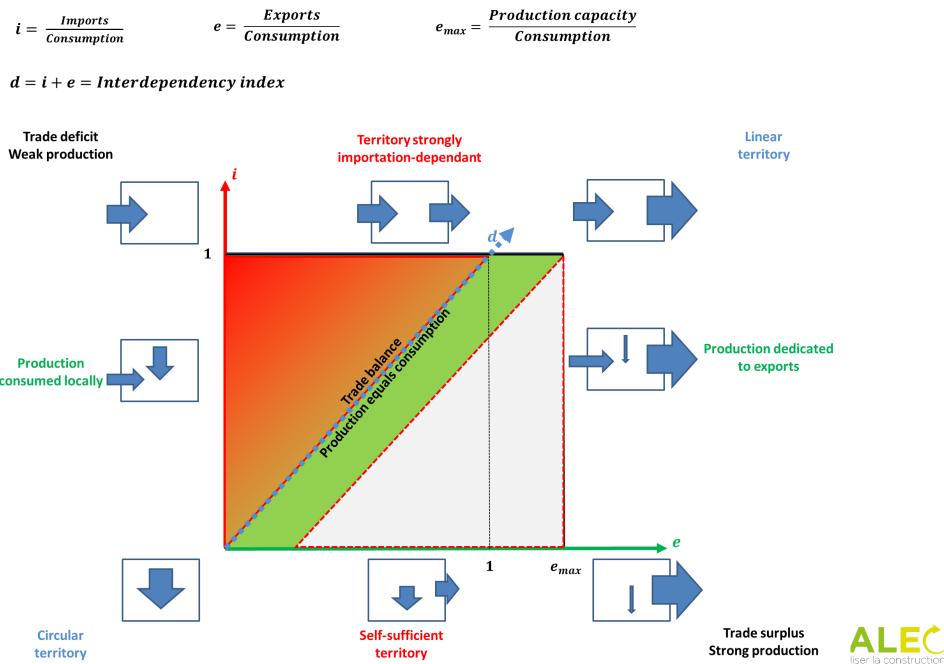
- Successful comparison of different construction techniques and territories even with very rough hypotheses
- Pilot tests with different builders in progress
- Need to refine hypotheses to better match with local stakes, geology, environmental issues, development scenarios, etc.
 - Many data required, especially with high geographical resolution
 - Assess relevance of use of expert-based / probabilistic approaches to avoid time consuming studies
- Application of the double normalization framework:
 - To other materials, primary **and** secondary, direct and indirect
 - To life cycle impacts
- Test how to handle multicriteria analysis for a thorough decision support tool

Alliance **HOE**

THANK YOU FOR YOUR KIND ATTENTION!

CONTACTS :

Rodrigues Jérémy : j.rodrigues@brgm.fr


OVALEC project leaders: <u>manuel.bazzana@cstb.fr</u> <u>nicoleta.schiopu@cstb.fr</u>

BRGM SERVICE GÉOLOGIQUE NATIONAL WWW.BRGM.FR

Differents territorial metabolism configurations

Back

